EM Filaments and Apertures

Replacement Filaments for Electron Microscopes

The filaments supplied by TAAB are made in specially designed jigs to ensure accuracy and reproducibility. High ductility tungsten wire is used to minimise strain in the wire. All filaments are stress relieved by flashing in a vacuum at temperatures above the normal operating level. They are then checked for accuracy of centring. Filament assemblies with alignment screws are set up under a light microscope to ensure they are ready for immediate operation in the EM.

Filament Repair Service

Most filaments can be accepted for repair provided the bases are in good condition. If the insulators need replacement these will be changed (if available) and charged in addition. Repaired filaments are given the same exacting care as new filaments. All are preflashed in vacuum to promote stability in operation and those filaments on bases provided with adjustment screws are subsequently recentred under the light microscope. The filaments sent for repair must be in a suitable transit box or tube.

F149 Refilamenting Siemens type	F150 Refilamenting JEOL type	F151 Refilamenting ISI/ABT
F206 Refilamenting Amray	F207 Refilamenting Philips	F208 Refilamenting Hitachi

EM Filaments and Apertures

F209 On Philips base F210 On Siemens base F211 On Cambridge/LEO base F212 On JEOL base F213 On Zeiss base F214 On ISI/ABT base F215 On Hitachi Sbase F216 On Amray base F217 On VG base

Lanthanum Hexaboride Filaments

Kimball Physics single crystal lanthanum hexaboride cathodes are available for most makes of electron microscopes and other electron beam instruments where a suitable gun vacuum in the region of 10⁻⁷ Torr is attainable. The filament heater can then be driven by the normal power supply of the microscope. These are tiny tips (15µm diameter) of lanthanum hexaboride mounted on the end of a single, stress-free carbon heater rod held in place by a carbon ferrule.

Brightness above 1 x 10⁶ Amp/cm² steradian is achievable.

For SEM applications, the higher brightness provides better imaging resolution and improved efficiency for microanalytical applications. For TEM imaging, the low energy spread of the LaB₆ filament is particularly advantageous for high-resolution imaging. Alternatively, LaB₆ filaments may be used where a long filament life is of importance. Lifetimes in excess of 6 months continuous operation are regularly achieved. The standard LaB₆ filament has a 15µm microflat tip and a cone angle of 90°. Other LaB₆ configurations are available for specialist applications. For further information please ask for Kimball Physics leaflet.

ES423E Series with **90° cone** and **15µm microflat**. This style 90-15 cathode is the standard LaB₆ crystal filament, ground with a 90° cone, terminated with a truncation of 15µm diameter. This is the standard style of filament recommended for long life, stability and uniformity

ES423E Series with **90° cone** and **20µm microflat.** This style is designed to be used in scanning electron microscopes that normally operate with a high emission current in the range 60-100µA. The 90° cone is terminated with a 20µm diameter microflat. A long lifetime of this filament can be achieved providing a good gun vacuum is maintained.

ES423E Series with **60° cone** and **6µm microflat.** This 60-06 filament has the tip of an ES423E LaB₆ crystal ground with a 60° cone terminated with a polished truncation of 6µm diameter. This type of filament can provide a higher brightness than filaments with larger truncations. The main application of this style is in high resolution TEM where the total beam current is frequently restricted to minimise electron energy spread. Adequate brightness is attainable at very low emission levels. As a consequence of achieving the higher brightness the effective lifetime is likely to be slightly shorter than the conventional 90-15 filament.

Microscope Type	90º cone 15µm microflat	90º cone 20µm microflat	60º cone 6µm microflat
AEI base for Camscan, Cameca,Electroscan, Cambridge Instruments, LEO/Leica/Zeiss	F211-9015	F211-9020	F211-6006
FEI/Philips(not XL30)	F-209-9015	F209-9020	F209-6006
FEI XL30	F217-9015	F217-9020	F217-6006
JEOL K Base	F212-9015	F212-9020	F212-6006
Zeiss (please specify make & model)	F213-9015	F213-9020	F213-6006
ISI/ABT/Topcon two pin	F214-9015	F214-9020	F214-6006
Hitachi S	F215-9015	F215-9020	F215-6006